报告摘要:This paper deals with the existence of traveling wave solutions to a delayed temporally discrete non-local reaction diffusion equation model, which has been derived recently for a single species with age structure. When the birth function satisfies monotonic condition, we obtained the traveling wavefront by using upper and lower solution methods together with monotonic iteration techniques. Otherwise, without the monotonicity assumption for birth function, we constructed two auxiliary equations. By means of the traveling wavefronts of the auxiliary equations, using the Schauder’s fixed point theorem, we proved the existence of a travelling wave solution to the equation under consideration with speed c > c∗ , where c∗ > 0 is some constant. We found that the delayed temporally discrete non-local reaction diffusion equation possesses the dynamical consistency with its time continuous counterpart at least in the sense of the existence of traveling wave solutions.
报告时间:2021年9月14日(周二)晚 20:00-21:00
报告地点:线上,腾讯会议号:492344752
报告人简介:
郭志明,广州大学数学与信息科学学院教授,博士生导师。长期致力于微分方程及其在生物数学中的应用研究。已在JDE、JMB、JDDE等杂志发表高质量学术论文70多篇,其中被SCI收录50余篇,他人引用超过1000次。主持以及完成国家自然科学基金面上项目4项,参加完成国家自然科学基金重点项目1项,主持完成高校博士点基金1项,是教育部创新团队“泛函微分方程及其相关问题”的核心成员。