报告摘要:A linear eigenvalue problem governed by a second order differential equation with separate and general boundary conditions is considered and a new monotonicity result on the principal eigenvalue with respect to the coefficient of the advection term is established. The main approach is based on the functional proposed by Liu and Lou and a key finding lies in the nice properties of the associated Frechet operator when confined at suitable points and function spaces. As an application, this monotonicity result is used to study a class of competitive parabolic systems and the so-called exclusion principle is observed in a larger parameter region than several existing works, which is a nontrivial improvement.
报告时间:2022年4月28日(周四)下午15:00-16:30
报告地点:线上,腾讯会议号:949617980
报告人简介:
周鹏,上海师范大学数学系教授。2015年获上海交通大学理学博士,2015年-2017年,在加拿大纽芬兰纪念大学从事 AARMS博士后研究。2017年入选上海高校特聘教授(东方学者)。主持的项目包括国家自然基金面上等。主要研究领域为微分方程和动力系统,部分研究成果发表在JDE, JFA, JMPA, CVPDE, SIAP等国际知名数学期刊上。