报告摘要:This talk is devoted to a nonlocal dispersal logistic model with seasonal succession and free boundaries, where the free boundaries represent the expanding front and the seasonal succession accounts for the effect of two different seasons. Technically, this free boundary problem is much more difficult than the case without seasonal succession since the coefficients are all time periodic and piecewise continuous. We prove the existence and uniqueness of global solution, and then examine the long-time dynamical behavior and the criteria that completely determine when spreading and vanishing can happen, revealing some significant differences from the model without seasonal succession. Moreover, we use a “thin-tail” condition on the kernel function to estimate the asymptotic spreading speed, which is achieved by solving the associated semi-wave problem.
报告时间:2022年4月26日(周二)下午15:00-16:30
报告地点:线上,腾讯会议号:340378595
报告人简介:
戴斌祥,中南大学数学与统计学院二级教授、博士生导师;湖南省数学学会常务理事、高等教育与大学数学竞赛工作委员会副主任委员;中国数学会生物数学专业委员会常务理事;入选湖南省新世纪121人才工程人选;主要从事时滞微分方程与离散动力系统、种群生态学与传染病学、反应扩散方程的定性理论与应用等领域的研究,先后在《Nonlinearity》、《J. Dyn. Diff. Equ.》、《J. Math. Anal. Appl.》、《Appl. Math. Model》、《Discrete Contin. Dyn. Sys.》、《Nonlinear Anal.》等国内外权威期刊上发表学术论文160多篇,主持5项国家自然科学基金面上项目、1项国家973计划子课题和多项省部级科研课题,获得湖南省科技进步一等奖和湖南省自然科学一等奖各1项,主编出版教材6部,2020年获得全国宝钢教育基金优秀教师奖。