【理学•学术报告】Truncated Euler-Maruyama Method for Stochastic L-V Competition Models

报告摘要: In this talk, we aimed at the well-known stochastic LotkaVolterra model with the interaction of multi-species in ecology of having some typical features: highly nonlinear, positive solution and multi-dimensional. The known numerical methods including the tamed/truncated EulerMaruyama (EM) applied to it do not preserve the positivity of the stochastic L-V compitition models. The aim of this talk is to modify the truncated EM to establish a new positive preserving truncated EM (PPTEM). To simplify the proof as well as to make our theory more understandable, we first develop a nonnegative preserving truncated EM (NPTEM) and then establish the PPTEM. Of course, we should point out that the NPTEM has its own right as many SDE models in applications have their nonnegative solutions.

 

报告时间:2024518日(周六)下午14:30-15:30

报告地点:主楼H203

 

报告人简介:

 

魏凤英,福州大学数学与计算机科学学院教授。于2006年在东北师范大学数学系获博士学位;2015年至2016年在芬兰赫尔辛基大学进行学术交流与访问。主要从事传染病建模及其动力学机制、微分方程在生物数学中的应用,包括定性与稳定性等方面的研究。作为负责人完成国家级科研项目三项、省部级科研项目四项、出版教材一部,累计发表国内外核心期刊论文百余篇,其中高水平刊物收录30余篇。获第十届福建省自然科学优秀学术论文二等奖;福建省优秀硕士学位论文指导教师等奖项;曾参加范更华教授主持的离散数学机器应用“211工程”重点学科团队。魏教授个人主页:https://math.fzu.edu.cn/


文章来源:哈工大(威海)今日工大