报告摘要: In this talk, we study a time-periodic nonlocal dispersal susceptible-infected-susceptible epidemic model with Neumann boundary conditions, where the total population number is constant. First, we investigate limiting profile of the spectral bound for a time-periodic nonlocal dispersal operator, and then obtain asymptotic behavior of the basic reproduction ratio of the model as the dispersal rates go to zero and infinity, respectively. Next, we establish the existence, uniqueness and stability of steady states of the model in terms of the basic reproduction ratio. Finally, we discuss the impacts of small and large diffusion rates of the susceptible and infectious populations on the persistence and extinction of the disease.
报告时间:2024年7月11日(周四)下午15:30-17:00,
报告地点:线下,H203
报告人简介:
王其如,中山大学数学学院教授、博士研究生导师,中国工业与应用数学学会理事、数学与国防创新委员会委员、数学模型专业委员会委员,广东省和广州工业与应用数学学会理事长、党支部书记。王教授从事微分方程与动力系统、数学建模等方面的研究及应用,主持完成国家自然科学基金面上项目4项、在研1项,在国内外学术期刊J. Differential Equations、Adv. Nonlinear Anal.、J. Nonlinear Sci.、Nonlinear Anal. Real World Appl.、Discrete Contin. Dyn. Syst.、Fract. Calc. Appl. Anal.、中国科学数学(中、英文版)等发表相关学术论文140 余篇。是德国《数学文摘》和美国《数学评论》的评论员等。